Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 10.215
1.
Nature ; 629(8011): 295-306, 2024 May.
Article En | MEDLINE | ID: mdl-38720037

Fossil fuels-coal, oil and gas-supply most of the world's energy and also form the basis of many products essential for everyday life. Their use is the largest contributor to the carbon dioxide emissions that drive global climate change, prompting joint efforts to find renewable alternatives that might enable a carbon-neutral society by as early as 2050. There are clear paths for renewable electricity to replace fossil-fuel-based energy, but the transport fuels and chemicals produced in oil refineries will still be needed. We can attempt to close the carbon cycle associated with their use by electrifying refinery processes and by changing the raw materials that go into a refinery from fossils fuels to carbon dioxide for making hydrocarbon fuels and to agricultural and municipal waste for making chemicals and polymers. We argue that, with sufficient long-term commitment and support, the science and technology for such a completely fossil-free refinery, delivering the products required after 2050 (less fuels, more chemicals), could be developed. This future refinery will require substantially larger areas and greater mineral resources than is the case at present and critically depends on the capacity to generate large amounts of renewable energy for hydrogen production and carbon dioxide capture.


Carbon Dioxide , Fossil Fuels , Oil and Gas Industry , Renewable Energy , Carbon Cycle , Carbon Dioxide/adverse effects , Carbon Dioxide/isolation & purification , Coal/adverse effects , Coal/supply & distribution , Fossil Fuels/adverse effects , Fossil Fuels/supply & distribution , Hydrogen/chemistry , Natural Gas/adverse effects , Natural Gas/supply & distribution , Petroleum/adverse effects , Petroleum/supply & distribution , Renewable Energy/statistics & numerical data , Oil and Gas Industry/methods , Oil and Gas Industry/trends
2.
PLoS One ; 19(5): e0302972, 2024.
Article En | MEDLINE | ID: mdl-38722925

Electroless nickel plating is a suitable technology for the hydrogen industry because electroless nickel can be mass-produced at a low cost. Investigating in a complex environment where hydrogen permeation and friction/wear work simultaneously is necessary to apply it to hydrogen valves for hydrogen fuel cell vehicles. In this research, the effects of hydrogen permeation on the mechanical characteristics of electroless nickel-plated free-cutting steel (SUM 24L) were investigated. Due to the inherent characteristics of electroless nickel plating, the damage (cracks and delamination of grain) and micro-particles by hydrogen permeation were clearly observed at the grain boundaries and triple junctions. In particular, the cracks grew from grain boundary toward the intergranualr. This is because the grain boundaries and triple junctions are hydrogen permeation pathways and increasing area of the hydrogen partial pressure. As a result, its surface roughness increased by a maximum of two times, and its hardness and adhesion strength decreased by hydrogen permeation. In particular, hydrogen permeation increased the friction coefficient of the electroless nickel-plated layer, and the damage caused by adhesive wear was significantly greater, increasing the wear depth by up to 5.7 times. This is believed to be due to the decreasing in wear resistance of the electroless nickel plating layer damaged by hydrogen permeation. Nevertheless, the Vickers hardness and the friction coefficient of the electroless nickel plating layer were improved by about 3 and 5.6 times, respectively, compared with those of the free-cutting steel. In particular, the electroless nickel-plated specimens with hydrogen embrittlement exhibited significantly better mechanical characteristics and wear resistance than the free-cutting steel.


Hydrogen , Nickel , Steel , Hydrogen/chemistry , Nickel/chemistry , Steel/chemistry , Electric Power Supplies , Surface Properties , Materials Testing
3.
J Chem Phys ; 160(18)2024 May 14.
Article En | MEDLINE | ID: mdl-38716851

We studied the origin of the vibrational signatures in the sum-frequency generation (SFG) spectrum of fibrillar collagen type I in the carbon-hydrogen stretching regime. For this purpose, we developed an all-reflective, laser-scanning SFG microscope with minimum chromatic aberrations and excellent retention of the polarization state of the incident beams. We performed detailed SFG measurements of aligned collagen fibers obtained from rat tail tendon, enabling the characterization of the magnitude and polarization-orientation dependence of individual tensor elements Xijk2 of collagen's nonlinear susceptibility. Using the three-dimensional atomic positions derived from published crystallographic data of collagen type I, we simulated its Xijk2 elements for the methylene stretching vibration and compared the predicted response with the experimental results. Our analysis revealed that the carbon-hydrogen stretching range of the SFG spectrum is dominated by symmetric stretching modes of methylene bridge groups on the pyrrolidine rings of the proline and hydroxyproline residues, giving rise to a dominant peak near 2942 cm-1 and a shoulder at 2917 cm-1. Weak asymmetric stretches of the methylene bridge group of glycine are observed in the region near 2870 cm-1, whereas asymmetric CH2-stretching modes on the pyrrolidine rings are found in the 2980 to 3030 cm-1 range. These findings help predict the protein's nonlinear optical properties from its crystal structure, thus establishing a connection between the protein structure and SFG spectroscopic measurements.


Carbon , Collagen Type I , Hydrogen , Hydrogen/chemistry , Carbon/chemistry , Collagen Type I/chemistry , Rats , Animals , Spectrum Analysis/methods
4.
Drug Des Devel Ther ; 18: 1399-1414, 2024.
Article En | MEDLINE | ID: mdl-38707612

Hydrogen, which is a novel biomedical molecule, is currently the subject of extensive research involving animal experiments and in vitro cell experiments, and it is gradually being applied in clinical settings. Hydrogen has been proven to possess anti-inflammatory, selective antioxidant, and antiapoptotic effects, thus exhibiting considerable protective effects in various diseases. In recent years, several studies have provided preliminary evidence for the protective effects of hydrogen on spinal cord injury (SCI). This paper provides a comprehensive review of the potential molecular biology mechanisms of hydrogen therapy and its application in treating SCI, with an aim to better explore the medical value of hydrogen and provide new avenues for the adjuvant treatment of SCI.


Hydrogen , Spinal Cord Injuries , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Hydrogen/pharmacology , Hydrogen/chemistry , Humans , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Apoptosis/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
5.
J Am Chem Soc ; 146(19): 13488-13498, 2024 May 15.
Article En | MEDLINE | ID: mdl-38709095

Self-assembling peptides represent a captivating area of study in nanotechnology and biomaterials. This interest is largely driven by their unique properties and the vast application potential across various fields such as catalytic functions. However, design complexities, including high-dimensional sequence space and structural diversity, pose significant challenges in the study of such systems. In this work, we explored the possibility of self-assembled peptides to catalyze the hydrolysis of hydrosilane for hydrogen production using ab initio calculations and carried out wet-lab experiments to confirm the feasibility of these catalytic reactions under ambient conditions. Further, we delved into the nuanced interplay between sequence, structural conformation, and catalytic activity by combining modeling with experimental techniques such as transmission electron microscopy and nuclear magnetic resonance and proposed a dual mode of the microstructure of the catalytic center. Our results reveal that although research in this area is still at an early stage, the development of self-assembled peptide catalysts for hydrogen production has the potential to provide a more sustainable and efficient alternative to conventional hydrogen production methods. In addition, this work also demonstrates that a computation-driven rational design supplemented by experimental validation is an effective protocol for conducting research on functional self-assembled peptides.


Hydrogen , Peptides , Hydrogen/chemistry , Catalysis , Peptides/chemistry , Models, Molecular , Hydrolysis
6.
Nat Commun ; 15(1): 3708, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714662

Cheminformatics-based machine learning (ML) has been employed to determine optimal reaction conditions, including catalyst structures, in the field of synthetic chemistry. However, such ML-focused strategies have remained largely unexplored in the context of catalytic molecular transformations using Lewis-acidic main-group elements, probably due to the absence of a candidate library and effective guidelines (parameters) for the prediction of the activity of main-group elements. Here, the construction of a triarylborane library and its application to an ML-assisted approach for the catalytic reductive alkylation of aniline-derived amino acids and C-terminal-protected peptides with aldehydes and H2 is reported. A combined theoretical and experimental approach identified the optimal borane, i.e., B(2,3,5,6-Cl4-C6H)(2,6-F2-3,5-(CF3)2-C6H)2, which exhibits remarkable functional-group compatibility toward aniline derivatives in the presence of 4-methyltetrahydropyran. The present catalytic system generates H2O as the sole byproduct.


Amino Acids , Aniline Compounds , Boranes , Peptides , Aniline Compounds/chemistry , Catalysis , Amino Acids/chemistry , Peptides/chemistry , Boranes/chemistry , Hydrogen/chemistry , Computer Simulation , Oxidation-Reduction , Alkylation , Machine Learning
7.
Chemosphere ; 357: 141944, 2024 Jun.
Article En | MEDLINE | ID: mdl-38614402

Photoelectrocatalysis stands as an exceptionally efficient and sustainable method, significantly addressing both energy scarcity and environmental pollution challenges. Within this realm, quantum dots (QDs) have garnered immense attention for their outstanding catalytic properties. Their unique features-cost-effectiveness, high efficiency, remarkable stability, and exceptional photovoltaic characteristics-set them apart from other tunable semiconductor materials. Heterojunction structures based on quantum dots remarkably boost solar energy conversion efficiency. This review aims to provide a comprehensive overview of the impacts generated by heterojunctions formed using diverse quantum dots and delve into their catalytic applications. Moreover, it sheds light on recent advancements utilizing quantum dots in modifying optoelectronic semiconductor materials for diverse purposes, ranging from hydrogen (H2) generation to carbon and nitrogen reduction, as well as pollutant degradation. Additionally, the paper offers valuable insights into challenges faced by quantum dot applications and outlines promising future prospects.


Quantum Dots , Quantum Dots/chemistry , Catalysis , Semiconductors , Hydrogen/chemistry , Solar Energy , Nitrogen/chemistry , Carbon/chemistry
8.
Chemosphere ; 357: 142033, 2024 Jun.
Article En | MEDLINE | ID: mdl-38615961

The design and preparation of dual-functional photocatalysts for simultaneously realizing photocatalytic wastewater purification and hydrogen energy generation pose significant challenges. This article presents the engineering of a binary heterostructured photocatalyst by combining TiO2 (nanorods) and MoS2 nanosphere using a straightforward solvothermal method and the assessment of the phase structures, morphologies, and optical properties of the resulting nanocomposites using diverse analytical techniques. The TiO2(Rod)/MoS2 composite exhibits remarkable efficacy in degrading ciprofloxacin, achieving 93% removal rate within 1 h, which is four times higher than that of bare TiO2. Moreover, the optimized TiO2(Rod)/MoS2 presents an outstanding hydrogen production rate of 7415 µmol g-1, which is ∼24 times higher than that of pristine TiO2. Under UV-visible light irradiation, the TiO2(Rod)/MoS2 heterojunction displays an exceptional photocatalytic performance in terms of both photodegradation and hydrogen production, surpassing the performance of TiO2 particle/MoS2. The study findings demonstrate that TiO2(Rod)/MoS2 nanocomposites exhibit considerably improved photocatalytic degradation and hydrogen generation activities. Based on the experimental results, a possible mechanism is proposed for the transfer and separation of charge carriers in Z-scheme heterojunctions.


Anti-Bacterial Agents , Disulfides , Hydrogen , Molybdenum , Nanospheres , Nanotubes , Titanium , Titanium/chemistry , Molybdenum/chemistry , Catalysis , Anti-Bacterial Agents/chemistry , Nanospheres/chemistry , Hydrogen/chemistry , Disulfides/chemistry , Nanotubes/chemistry , Nanocomposites/chemistry , Photolysis , Water Pollutants, Chemical/chemistry , Wastewater/chemistry , Ciprofloxacin/chemistry
9.
Nat Commun ; 15(1): 3349, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637496

Catalysed C-H activation has emerged as a transformative platform for molecular synthesis and provides new opportunities in drug discovery by late-stage functionalisation (LSF) of complex molecules. Notably, small aliphatic motifs have gained significant interest in medicinal chemistry for their beneficial properties and applications as sp3-rich functional group bioisosteres. In this context, we disclose a versatile strategy with broad applicability for the ruthenium-catalysed late-stage meta-C(sp2)-H alkylation of pharmaceuticals. This general protocol leverages numerous directing groups inherently part of bioactive scaffolds to selectivity install a variety of medicinally relevant bifunctional alkyl units within drug compounds. Our strategy enables the direct modification of unprotected lead structures to quickly generate an array of pharmaceutically useful analogues without resorting to de novo syntheses. Moreover, productive late-stage modulation of key biological characteristics of drug candidates upon remote C-H alkylation proves viable, highlighting the major benefits of our approach to offer in drug development programmes.


Hydrogen , Ruthenium , Hydrogen/chemistry , Alkylation , Ruthenium/chemistry , Catalysis , Pharmaceutical Preparations
10.
ACS Nano ; 18(16): 10840-10849, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38616401

External electric field has the potential to influence metabolic processes such as biological hydrogen production in microorganisms. Based on this concept, we designed and constructed an electroactive hybrid system for microbial biohydrogen production under an electric field comprised of polydopamine (PDA)-modified Escherichia coli (E. coli) and Ni foam (NF). In this system, electrons generated from NF directly migrate into E. coli cells to promote highly efficient biocatalytic hydrogen production. Compared to that generated in the absence of electric field stimulation, biohydrogen production by the PDA-modified E. coli-based system is significantly enhanced. This investigation has demonstrated the mechanism for electron transfer in a biohybrid system and gives insight into precise basis for the enhancement of hydrogen production by using the multifield coupling technology.


Electrons , Escherichia coli , Hydrogen , Polymers , Escherichia coli/metabolism , Hydrogen/metabolism , Hydrogen/chemistry , Polymers/chemistry , Polymers/metabolism , Indoles/chemistry , Indoles/metabolism , Nickel/chemistry , Nickel/metabolism , Electron Transport
11.
Chemosphere ; 356: 141929, 2024 May.
Article En | MEDLINE | ID: mdl-38604520

The cleaning and utilization of industry wastewater are still a big challenge. In this work, we mainly investigate the effect of electron transfer among multi-interfaces on water electrolysis reaction. Typically, the CoS2, Co3S4/CoS2 (designated as CS4-2) and Co3S4/Co9S8/CoS2 (designated as CS4-8-2) samples are prepared on a large scale by one-step molten salt method. It is found that because of the different work functions (designated as WF; WF(Co3S4) = 4.48eV, WF(CoS2) = 4.41eV, WF(Co9S8) = 4.18 eV), the effective heterojunctions at the multi-interfaces of CS4-8-2 sample, which obviously improve interface charge transfer. Thus, the CS4-8-2 sample shows an excellent oxygen evolution reaction (OER) activity (134 mV/10 mA cm-2, 40 mV dec-1). The larger double-layer capacitance (Cdl = 17.1 mF cm-2) of the CS4-8-2 sample indicates more electrochemical active sites, compared to the CoS2 and CS4-2 samples. Density functional theory (DFT) calculation proves that due to interface polarization under electric field, the multi-interfaces effectively promote electron transfer and regulate electron structure, thus promoting the adsorption of OH- and dissociation of H2O. Moreover, an innovative norfloxacin (NFX) electrolytic cell (EC) is developed through introducing NFX into the electrolyte, in which efficient NFX degradation and hydrogen production are synergistically achieved. To reach 50 mA cm-2, the required cell voltage of NFX-EC has decreased by 35.2%, compared to conventional KOH-EC. After 2h running at 1 V, 25.5% NFX was degraded in the NFX EC. This innovative NFX-EC is highly energy-efficient, which is promising for the synergistic cleaning and utilization of industry wastewater.


Electrolysis , Hydrogen , Wastewater , Water , Hydrogen/chemistry , Wastewater/chemistry , Water/chemistry , Electron Transport , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods , Oxygen/chemistry , Electrons
12.
ACS Sens ; 9(4): 2101-2109, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38574240

Single-atom catalysts (SACs) hold great promise in highly sensitive and selective gas sensors due to their ultrahigh atomic efficiency and excellent catalytic activity. However, due to the extremely high surface energy of SACs, it is still a huge challenge to synthesize a stable single-atom metal on sensitive materials. Here, we report an atomic layer deposition (ALD) strategy for the elaborate synthesis of single-atom Pt on oxygen vacancy-rich Fe2O3 nanosheets (Pt-Fe2O3-Vo), which displayed ultrafast and sensitive detection to H2, achieving the stability of Pt single atoms. Gas-sensing investigation showed that the Pt-Fe2O3-Vo materials enabled a significantly enhanced response of 26.5-50 ppm of H2, which was 17-fold higher than that of pure Fe2O3, as well as ultrafast response time (2 s), extremely low detection limit (86 ppb), and improved stability. The experimental and density functional theory (DFT) studies revealed that the abundant oxygen vacancy sites of Fe2O3 contributed to stabilizing the Pt atoms via electron transfer. In addition, the stabilized Pt atoms also greatly promote the electron transfer of H2 molecules to Fe2O3, thereby achieving an excellent H2 sensing performance. This work provides a potential strategy for the development of highly selective and stable chemical sensors.


Ferric Compounds , Hydrogen , Nanostructures , Oxygen , Platinum , Platinum/chemistry , Oxygen/chemistry , Hydrogen/chemistry , Ferric Compounds/chemistry , Nanostructures/chemistry , Density Functional Theory , Catalysis , Limit of Detection
13.
Mar Drugs ; 22(4)2024 Apr 03.
Article En | MEDLINE | ID: mdl-38667781

This study focuses on the optimization of chitin oxidation in C6 to carboxylic acid and its use to obtain a hydrogel with tunable resistance. After the optimization, water-soluble crystalline ß-chitin fibrils (ß-chitOx) with a degree of functionalization of 10% were obtained. Diverse reaction conditions were also tested for α-chitin, which showed a lower reactivity and a slower reaction kinetic. After that, a set of hydrogels was synthesized from ß-chitOx 1 wt.% at pH 9, inducing the gelation by sonication. These hydrogels were exposed to different environments, such as different amounts of Ca2+, Na+ or Mg2+ solutions, buffered environments such as pH 9, PBS, pH 5, and pH 1, and pure water. These hydrogels were characterized using rheology, XRPD, SEM, and FT-IR. The notable feature of these hydrogels is their ability to be strengthened through cation chelation, being metal cations or hydrogen ions, with a five- to tenfold increase in their storage modulus (G'). The ions were theorized to alter the hydrogen-bonding network of the polymer and intercalate in chitin's crystal structure along the a-axis. On the other hand, the hydrogel dissolved at pH 9 and pure water. These bio-based tunable hydrogels represent an intriguing material suitable for biomedical applications.


Chitin , Hydrogels , Oxidation-Reduction , Hydrogels/chemistry , Chitin/chemistry , Hydrogen-Ion Concentration , Metals/chemistry , Rheology , Hydrogen/chemistry , Spectroscopy, Fourier Transform Infrared
14.
Biotechnol J ; 19(4): e2300567, 2024 Apr.
Article En | MEDLINE | ID: mdl-38581100

An attractive application of hydrogenases, combined with the availability of cheap and renewable hydrogen (i.e., from solar and wind powered electrolysis or from recycled wastes), is the production of high-value electron-rich intermediates such as reduced nicotinamide adenine dinucleotides. Here, the capability of a very robust and oxygen-resilient [FeFe]-hydrogenase (CbA5H) from Clostridium beijerinckii SM10, previously identified in our group, combined with a reductase (BMR) from Bacillus megaterium (now reclassified as Priestia megaterium) was tested. The system shows a good stability and it was demonstrated to reach up to 28 ± 2 nmol NADPH regenerated s-1 mg of hydrogenase-1 (i.e., 1.68 ± 0.12 U mg-1, TOF: 126 ± 9 min-1) and 0.46 ± 0.04 nmol NADH regenerated s-1 mg of hydrogenase-1 (i.e., 0.028 ± 0.002 U mg-1, TOF: 2.1 ± 0.2 min-1), meaning up to 74 mg of NADPH and 1.23 mg of NADH produced per hour by a system involving 1 mg of CbA5H. The TOF is comparable with similar systems based on hydrogen as regenerating molecule for NADPH, but the system is first of its kind as for the [FeFe]-hydrogenase and the non-physiological partners used. As a proof of concept a cascade reaction involving CbA5H, BMR and a mutant BVMO from Acinetobacter radioresistens able to oxidize indole is presented. The data show how the cascade can be exploited for indigo production and multiple reaction cycles can be sustained using the regenerated NADPH.


Hydrogenase , Hydrogenase/chemistry , NAD , Hydrogen/chemistry , NADP , Oxidoreductases
15.
Water Res ; 256: 121573, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38608618

Sulfidated zero valent iron (ZVI) is a popular material for the reductive degradation of halogenated organic pollutants. Simple and economic synthesis of this material is highly demanded. In this study, sulfidated micro/nanostructured ZVI (MNZVI) particles were prepared by simply heating MNZVI particles and sulfur elements (S0) in pure water (50℃). The iron oxides on the surface of MNZVI particles were conducive to sulfidation reaction, indicating the formation of iron-sulphide minerals (FeSx) on the surface of MNZVI particles might not be from the direct reaction of Fe0 with S0 (Fe0 and S0 acted as reductant and oxidant, respectively). As an important reductant, hydrogen atom (H•) can be generated from the reduction of H+ by MNZVI particles and participate in the formation of FeSx. Quenching experiment and cyclic voltammetry analysis proved the existence of H• on the surface of MNZVI particles. DFT calculation found that the potential barrier of H•/S0 and Fe0/S0 were 1.91 and 7.24 eV, respectively, indicating that S0 would preferentially react with H• instead of Fe0. The formed H• can quickly react with S0 to generate hydrogen sulfide (H2S), which can further react with iron oxides such as α-Fe2O3 on the surface of MNZVI particles to form FeSx. In addition, the H2 partial pressure in water significantly affected the amount of H• generated, thereby affecting the sulfidation efficiency. For TCE degradation, as the sulfur loading of sulfidated MNZVI particles increased, the contribution of H• significantly decreased while the contribution of direct electron transfer increased. This study provided new insights into the synthesis mechanism of sulfidated ZVI in water.


Hydrogen , Iron , Hydrogen/chemistry , Iron/chemistry , Oxidation-Reduction
16.
Int J Biol Macromol ; 267(Pt 2): 131538, 2024 May.
Article En | MEDLINE | ID: mdl-38621572

Lignin is continuously investigated by various techniques for valorization due to its high content of oxygen-containing functional groups. Catalytic systems employing hydrolysis­hydrogenolysis, leveraging the synergistic effect of redox metal sites and acid sites, exhibit efficient degradation of lignin. The predominance of either hydrolysis or hydrogenolysis reactions hinges upon the relative activity of acid and metal sites, as well as the intensity of the reductive atmosphere. In this study, the Pd-MoOx/TiO2 catalyst was found to primarily catalyze hydrolysis in the lignin depolymerization process, attributed to the abundance of moderate acidic sites on Pd and the redox-assisted catalysis of MoOx under inert conditions. After subjecting the reaction to 240 °C for 30 h, a yield of 48.22 wt% of total phenolic monomers, with 5.90 wt% consisting of diphenols, was achieved. Investigation into the conversion of 4-propylguaiacol (4-PG), a major depolymerized monomer of corncob lignin, revealed the production of ketone intermediates, a phenomenon closely linked to the unique properties of MoOx. Dehydrogenation of the propyl is a key step in initiating the reaction, and 4-PG could be almost completely transformed, accompanied by an over 97 % of 4-propylcatechol selectivity. This distinctive system lays a new theoretical groundwork for the eco-friendly valorization of lignin.


Lignin , Palladium , Titanium , Lignin/chemistry , Hydrolysis , Catalysis , Titanium/chemistry , Palladium/chemistry , Hydrogen/chemistry , Molybdenum/chemistry , Oxidation-Reduction , Oxides/chemistry
17.
Environ Sci Pollut Res Int ; 31(19): 28719-28733, 2024 Apr.
Article En | MEDLINE | ID: mdl-38558346

Green hydrogen generation technologies are currently the most pressing worldwide issues, offering promising alternatives to existing fossil fuels that endanger the globe with growing global warming. The current research focuses on the creation of green hydrogen in alkaline electrolytes utilizing a Ni-Co-nano-graphene thin film cathode with a low overvoltage. The recommended conditions for creating the target cathode were studied by electrodepositing a thin Ni-Co-nano-graphene film in a glycinate bath over an iron surface coated with a thin copper interlayer. Using a scanning electron microscope (SEM) and energy-dispersive X-ray (EDX) mapping analysis, the obtained electrode is physically and chemically characterized. These tests confirm that Ni, Co, and nano-graphene are homogeneously dispersed, resulting in a lower electrolysis voltage in green hydrogen generation. Tafel plots obtained to analyze electrode stability revealed that the Ni-Co-nano-graphene cathode was directed to the noble direction, with the lowest corrosion rate. The Ni-Co-nano-graphene generated was used to generate green hydrogen in a 25% KOH solution. For the production of 1 kg of green hydrogen utilizing Ni-Co-nano-graphene electrode, the electrolysis efficiency was 95.6% with a power consumption of 52 kwt h-1, whereas it was 56.212. kwt h-1 for pure nickel thin film cathode and 54. kwt h-1 for nickel cobalt thin film cathode, respectively.


Cobalt , Electrodes , Graphite , Hydrogen , Nickel , Graphite/chemistry , Hydrogen/chemistry , Nickel/chemistry , Cobalt/chemistry , Electrolysis
18.
Nature ; 629(8011): 363-369, 2024 May.
Article En | MEDLINE | ID: mdl-38547926

Cytochrome P450 enzymes are known to catalyse bimodal oxidation of aliphatic acids via radical intermediates, which partition between pathways of hydroxylation and desaturation1,2. Developing analogous catalytic systems for remote C-H functionalization remains a significant challenge3-5. Here, we report the development of Cu(I)-catalysed bimodal dehydrogenation/lactonization reactions of synthetically common N-methoxyamides through radical abstractions of the γ-aliphatic C-H bonds. The feasibility of switching from dehydrogenation to lactonization is also demonstrated by altering reaction conditions. The use of a readily available amide as both radical precursor and internal oxidant allows for the development of redox-neutral C-H functionalization reactions with methanol as the sole side product. These C-H functionalization reactions using a Cu(I) catalyst with loading as low as 0.5 mol.% is applied to the diversification of a wide range of aliphatic acids including drug molecules and natural products. The exceptional compatibility of this catalytic system with a wide range of oxidatively sensitive functionality demonstrates the unique advantage of using a simple amide substrate as a mild internal oxidant.


Amides , Carbon , Copper , Hydrogen , Oxidation-Reduction , Catalysis , Copper/chemistry , Copper/metabolism , Hydrogen/chemistry , Hydrogen/metabolism , Amides/chemistry , Amides/metabolism , Hydrogenation , Carbon/chemistry , Carbon/metabolism , Methanol/chemistry , Methanol/metabolism , Oxidants/chemistry , Oxidants/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/chemistry , Lactones/chemistry , Lactones/metabolism , Biological Products/chemistry , Biological Products/metabolism
19.
Adv Exp Med Biol ; 3234: 41-57, 2024.
Article En | MEDLINE | ID: mdl-38507199

The characterization of a protein complex by mass spectrometry can be conducted at different levels. Initial steps regard the qualitative composition of the complex and subunit identification. After that, quantitative information such as stoichiometric ratios and copy numbers for each subunit in a complex or super-complex is acquired. Peptide-based LC-MS/MS offers a wide number of methods and protocols for the characterization of protein complexes. This chapter concentrates on the applications of peptide-based LC-MS/MS for the qualitative, quantitative, and structural characterization of protein complexes focusing on subunit identification, determination of stoichiometric ratio and number of subunits per complex as well as on cross-linking mass spectrometry and hydrogen/deuterium exchange as methods for the structural investigation of the biological assemblies.


Peptides , Tandem Mass Spectrometry , Chromatography, Liquid , Hydrogen/chemistry
20.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article En | MEDLINE | ID: mdl-38542457

Biomass valorization is an essential strategy for converting organic resources into valuable energy and chemicals, contributing to the circular economy, and reducing carbon footprints. Glycerol, a byproduct of biodiesel production, can be used as a feedstock for a variety of high-value products and can contribute to reducing the carbon footprint. This study examines the impact of surface-level modifications of Mg, Cu, and Sn on Ni-Ce-Zr catalysts for the hydrogenolysis of glycerol, with in situ generated hydrogen. The aim of this approach is to enhance the efficiency and sustainability of the biomass valorization process. However, the surface modification resulted in a decrease in the global conversion of glycerol due to the reduced availability of metal sites. The study found that valuable products, such as H2 and CH4 in the gas phase, and 1,2-PG in the liquid phase, were obtained. The majority of the liquid fraction was observed, particularly for Cu- and Sn-doped catalysts, which was attributed to their increased acidity. The primary selectivity was towards the cleavage of the C-O bond. Post-reaction characterizations revealed that the primary causes of deactivation was leaching, which was reduced by the inclusion of Cu and Sn. These findings demonstrate the potential of Cu- and Sn-modified Ni-Ce-Zr catalysts to provide a sustainable pathway for converting glycerol into value-added chemicals.


Glycerol , Metals , Glycerol/chemistry , Hydrogen/chemistry , Catalysis , Biofuels
...